THE $S_{N} 1$ METHANOLYSIS OF A TERTIARY ORGANOSILICON IODIDE, $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{CSiMe}_{2} \mathrm{I}$

SAMAN A.I. AL-SHALI, COLIN EABORN *, and FOAD M.S. MAHMOUD
School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ (Great Britain)

(Received February 19th, 1982)

Summary

The highly sterically-hindered organosilicon iodide ($\left.\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{CSiMe}_{2} \mathrm{I}$ undergoes solvolysis in MeOH by an $S_{\mathrm{N}} 1$ process; the half-life is approximately 13 days at $50^{\circ} \mathrm{C}$, and the reaction is little accelerated by the presence of NaOMe , which does, however, induce a competing fragmentation.

Introduction

The tertiary organosilicon perchlorate $\mathrm{TsiSiMe}_{2} \mathrm{OClO}_{3}\left(\mathrm{Tsi}=\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{C}\right)$ and the secondary iodides TsiSiRHI ($\mathrm{R}=\mathrm{Me}$ or Ph) were recently shown to undergo solvolysis in MeOH by an $S_{\mathrm{N}} 1$ mechanism [1]. We have now found that the tertiary iodide TsiSiMe T_{2} I also undergoes $S_{\mathrm{N}} 1$ methanolysis, but at a much lower rate.

Results and discussion

The rate of the reaction of TsiSiMe ${ }_{2} \mathrm{I}$ with MeOH can be determined by observing the change in the relative heights (or integrations) of the ${ }^{1} \mathrm{H} N M R$ signals from $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{C}$ protons in the $\mathrm{TsiSiMe}_{2} \mathrm{I}(\mathrm{A})$ and the product $\mathrm{TsiSiMe}_{2} \mathrm{OMe}$ (B). Thus a solution of the iodide \mathbf{A} in anhydrous MeOH was kept at $50^{\circ} \mathrm{C}$, samples were withdrawn at appropriate intervals and evaporated, the residue was taken up in CCl_{4} and its ${ }^{1} \mathrm{H} N M R$ spectrum recorded, to give the \mathbf{A} / \mathbf{B} ratio. The first order rate constant, $k_{1}{ }^{\mathbf{S}}$, for the solvolysis was derived from the \mathbf{A} / \mathbf{B} ratio, with the result shown in Table 1. The same procedure worked satisfactorily for runs in the presence of LiCl or 0.05 M NaOMe , but at higher base concentrations allowance had to be made for the competing fragmentation reaction which gives $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{CHSiMe}_{2} \mathrm{OMe}(\mathrm{C})$ by bimolecular attack of MeO^{-} on $\mathrm{a}_{\mathrm{Me}}^{3} \mathrm{Si}$ group [2]. When a reaction in MeOH containing 0.40 M NaOMe

TABLE 1
APPROXIMATE FIRST-ORDER RATE CONSTANTS FOR THE REACTION OF TsiSiMe 2 I IN MeOH AT $50^{\circ} \mathrm{C}$

Added salt	$10^{7} k_{1} \mathrm{~T} / \mathrm{s}^{-1 a}$	$10^{7} k_{1} \mathrm{~S}_{/ \mathrm{s}^{-1 b}}$
None	6.4	$6.4(\pm 0.4)$
LiCl	7.1	$7.1(\pm 0.4)$
NaOMe, $0.05 M$	7.6	$7.6(\pm 0.4)$
NaOMe, $0.10 M$	9.5	$8.1(\pm 0.5)$
NaOMe, $0.20 M$	10.6	$8.0(\pm 0.6)$
NaOMe, $0.40 M$	14.3	$8.6(\pm 0.8)$

$\alpha_{\text {Apparent first-order rate constant for disappearance of TsiSiMe }}^{2}$ I. ${ }^{b}$ First-order rate constant for appearance of TsiSiMe $\mathrm{O}_{2} \mathrm{OMe}$ (with estimated uncertainties).
was stopped after 8 days at $50^{\circ} \mathrm{C}$ (i.e. after ca. 64% of \mathbf{A} had reacted), the ${ }^{1} \mathrm{H}$ NMR spectrum of the product mixture showed that it contained \mathbf{A}, \mathbf{B}, and \mathbf{C} in ca. 36/38/26 ratio. Allowance for the formation of \mathbf{C}, on the assumption that the ratio of B / C was ca. $3 / 2$ in $0.40 \mathrm{M}, 3 / 1$ in 0.02 M , and $6 / 1$ in 0.10 M NaOMe . then gave the approximate first-order rate constants $k_{1}{ }^{T}$, for the overall disappearance of $\mathrm{TsiSiMe} \mathrm{S}_{2} \mathrm{I}$, and $k_{1} \mathrm{~S}$ for the appearance of the solvolysis product B. (The corresponding correction of the observed rate constant for 0.05 M NaOMe is too small to be significant.)

While the rate constants listed in Table 1 are subject to substantial uncertainty (the value of $k_{1} \mathrm{~s}$ for reaction in MeOH alone is estimated to be accurate within ca. $\pm 5 \%$, while that in the presence of 0.4 M NaOMe could easily be in error by $\pm 10 \%$), some clear features are apparent:
(a) The solvolysis of $\mathrm{TsiSiMe}_{2} \mathrm{I}$ is much slower than that of the perchlorate TsiSiMe ${ }_{2} \mathrm{OClO}_{3}$ or the iodides TsiSiRHI ($\mathrm{R}=\mathrm{Me}$ or Ph); the half-life is ca. 13.2 days at $50^{\circ} \mathrm{C}$.
(b) The presence of 0.05 M NaOMe increases the rate of the solvolysis by ca. 20%. Subsequent increases in the NaOMe concentration cause smaller increases in the rate of solvolysis.
(c) The presence of 0.40 M LiCl increases the rate by ca. 10%, consistent with a salt effect.

As in the methanolysis of $\mathrm{TsiSiOClO}_{3}$ and TsiSiRHI [1], the effects of NaOMe are too small to be attributed to a bimolecular reaction involving attack of MeO^{-}on the $\mathrm{TsiSiMe}_{2} \mathrm{I}$, and this is strong evidence that the methanolysis is of the $S_{N} 1$ type, involving rate-determining ionization of the iodide. (The possible nature of the special rate-increasing salt effect of a small amount of NaOMe has beer considered previously [1].)

The diphenyl iodide $\mathrm{TsiSiPh}_{2} \mathrm{I}$ was found to react much more slowly, if at all, with MeOH under similar conditions; after 5 days under reflux there was no detectable reaction.

The results obtained with 0.4 M NaOMe in MeOH lead to a rough value of $6 \times 10^{-7} \mathrm{~s}^{-1}$ at $50^{\circ} \mathrm{C}$ for the apparent pseudo first-order rate constant for the fragmentation of $\mathrm{TsiSiMe}_{2} \mathrm{I}$ to give ($\left.\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{CHSiMe}_{2} \mathrm{OMe}(\mathrm{C})$, corresponding to a specific second order rate constant of ca. $1.5 \times 10^{-6} 1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$. If the rate of the fragmentation were proportional to the concentration of NaOMe , then with

2 M NaOMe in MeOH at $50^{\circ} \mathrm{C}$ the fragmentation would account for about 80% of the reaction. However, studies of other $\mathrm{Si}-\mathrm{C}$ bond cleavages by NaOMe in MeOH indicate that the specific second-order rate constant in 2 M base would be at least twice as large as that in 0.4 M NaOMe [3], and so the fragmentation would constitute some 90% of the reaction, and this is consistent with the earlier observation that $\left(\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{CHSiMe}_{2} \mathrm{OMe}(\mathrm{C})\right.$ is the greatly predominant product in 2 M NaOMe in MeOH under reflux [2].

Experimental

Materials

The iodides $\mathrm{TsiSiMe}_{2} \mathrm{I}$ and $\mathrm{TsiSiSiPh}_{2} \mathrm{I}$ [1] and samples of the products TsiSiMe ${ }_{2} \mathrm{OMe}$ [1] and $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{CHSiMe}_{2} \mathrm{OMe}$ [2] used for reference purposes were prepared as previously described.

Methanol was dried by refluxing with $\mathrm{Mg}(\mathrm{OMe})_{2}$ followed by distillation from the latter.
$N M R$ spectra. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 90 MHz with solutions in CCl_{4} containing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as lock and reference.

Reaction products

(a) A solution of $\mathrm{TsiSiMe}_{2} \mathrm{I}(0.1 \mathrm{~g})$ in $\mathrm{MeOH}\left(15 \mathrm{~cm}^{3}\right)$ was kept at $50^{\circ} \mathrm{C}$ for 22 days. (During the first hour, the mixture was shaken from time to time to ensure complete dissolution of the iodide.) The solution was then evaporated off under reduced pressure and the residue was taken up in CCl_{4}. The ${ }^{1} \mathrm{H}$ NMR spectrum of the solution showed it to contain only TsiSiMe ${ }_{2} \mathrm{OMe}$ and $\mathrm{TsiSiMe}_{2} \mathrm{I}$, in ca. 75/25 ratio.
(b) A similar result was obtained when the same procedure was carried out with MeOH containing 0.40 M LiCl .
(c) A similar procedure was used starting with a solution of $\mathrm{TsiSiMe}_{2} \mathrm{I}$ (ca. 0.2 g) in $\mathrm{MeOH}\left(20 \mathrm{~cm}^{3}\right)$ containing 0.40 M MeONa . When the reaction was stopped after 8 days the NMR spectrum of the product mixture in CCl_{4} showed that it contained $\mathrm{TsiSiMe}_{2} \mathrm{I}\left(\delta 0.36\right.$ and 1.06 ppm), $\mathrm{TsiSiMe}_{2} \mathrm{OMe}(\delta 0.21,0.28$ ppm) and ($\left.\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{CHSiMe}_{2} \mathrm{OMe}(\delta-0.54,0.10$ and 0.17 ppm) in ca. 36/38/26 ratio. The presence of two types of OMe group showed up as an unresolved doublet centred at $\delta 3.36 \mathrm{ppm}$.
(d) A solution of $\mathrm{TsiSiMe}_{2} \mathrm{OMe}(0.1 \mathrm{~g})$ in $\mathrm{MeOH}\left(15 \mathrm{~cm}^{3}\right)$ containing 0.4 M NaOMe was kept at $50^{\circ} \mathrm{C}$ for 8 days. The solvent was removed, and the residue extracted with CCl_{4}. The ${ }^{1} \mathrm{H}$ NMR spectrum of the extract showed it to contain only unchanged $\mathrm{TsiSiMe}_{2} \mathrm{OMe}$.
(e) A solution of $\mathrm{TsiSiPh}_{2} \mathrm{I}(0.2 \mathrm{~g})$ in $\mathrm{MeOH}\left(20 \mathrm{~cm}^{3}\right)$ was refluxed for 5 days. The usual work-up gave only unchanged $\mathrm{TsiSiPh}_{2} \mathrm{I}$.

Rate measurements

(a) In a typical run in MeOH alone, a solution of $\mathrm{TsiSiMe}_{2} \mathrm{I}(0.1 \mathrm{~g})$ in MeOH ($20 \mathrm{~cm}^{3}$) in a stoppered vessel was placed in a thermostatted bath kept at $50 \pm$ $0.02^{\circ} \mathrm{C}$. At appropriate intervals samples (ca. $2 \mathrm{~cm}^{3}$) were removed and quickly evaporated to dryness under reduced pressure. The residue was taken up in CCl_{4} (ca. $2 \mathrm{~cm}^{3}$), the ${ }^{1} \mathrm{H} \mathrm{NMR}$ spectrum of the solution was recorded and the
relative heights of the $\left(\mathrm{Me}_{3} \mathrm{Si}_{3}\right)_{3}$ peaks at $\delta 0.36 \mathrm{ppm}\left(\mathbf{A} ; \mathrm{TsiSiMe}_{2} \mathrm{I}\right)$ and $\delta 0.21$ ppm ($\mathbf{B} ; \mathbf{T s i S i M e}{ }_{2} \mathrm{OMe}$) were noted. The \mathbf{A} / \mathbf{B} ratios at various times were as follows:

Time (h)	72	168	264	366	504	648
A/B	$87 / 13$	$71 / 29$	$63 / 37$	$47 / 53$	$32 / 68$	$23 / 77$

These data gave a satisfactory first-order plot, and a first-order rate constant for the conversion of \mathbf{A} into \mathbf{B} of $6.4 \times 10^{-7} \mathrm{~s}^{-1}$.

Use of integrated signals from the Tsi peaks gave identical results within the experimental uncertainty.
(b) The same experimental procedure was used for solutions of $\mathrm{TsiSiMe}_{2} \mathrm{I}$ (0.1 g) in $\mathrm{MeOH}\left(25 \mathrm{~cm}^{3}\right.$) containing NaOMe . In a typical run in 0.40 M NaOMe . ratios of $\mathrm{TsiSiMe}_{2} \mathrm{I}$ (A) to $\mathrm{TsiSiMe}_{2} \mathrm{OMe}(\mathbf{B})$ at various intervals were as shown below. It was assumed that $\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{CHSiMe} \mathbf{2}_{2} \mathrm{OMe}(\mathrm{C})$ was present throughout in a \mathbf{C} / \mathbf{B} ratio of $2 / 3$, and the percentage of \mathbf{A} remaining was calculated.

Time (h)	0	72	168	264	366	480
$\% A /(A+B)$	100	79	49	265	24	14
$\% A /(A+B+C)$	100	69	37	18	16	9

The data lead to a first-order rate constant ($k_{1}{ }^{\mathrm{T}}$) of $14.3 \times 10^{-7} \mathrm{~s}^{-1}$ for overall conversion of \mathbf{A} into \mathbf{B} and \mathbf{C}, and corresponding constants of 8.6×10^{-7} and $5.7 \times 10^{-7} \mathrm{~s}^{-1}$ for formation of \mathbf{B} and \mathbf{C}, respectively, assuming the \mathbf{B} / \mathbf{C} ratio of 3/2.

Similar procedures were used for reactions with 0.20 , and 0.10 M NaOMe in MeOH , the ratios of B / C being assumed to be $3 / 1$ and $6 / 1$, respectively. The results are shown in Table 1.

Acknowledgments

We thank the S.E.R.C. for support of this work, and the Dow Corning Co., Ltd., for a gift of chlorotrimethylsilane.

References

1 C. Eaborn and F.M.S. Mahmoud, J. Chem. Sac., Chem. Commun., (1981) 63; J. Chem. Soc., Perkin Trans. II, (1981) 1309.
2 C. Eaborn. D.A.R. Happer and K.D. Safa, J. Organometal. Chem., 191 (1980) 355.
3 C. Eaborn and F.M.S. Mahmoud, J. Organometal. Chem., 206 (1981) 49.

